Colles de Maths - semaine 11 - MP*2 Lycée du Parc

Julien Allasia - ENS de Lyon

Exercice 1 Soit $\sum_{n\geqslant 0} a_n z^n$ une série entière de rayon de convergence $R\in]0,+\infty[$. On suppose qu'il existe z_0 tel que $|z_0|=R$ et $\sum_{n\geqslant 0} a_n z_0^n$ converge. Montrer qu'alors la convergence de la série entière est uniforme sur tout ensemble de la forme

$$C_{\theta_0} = \{ z_0 (1 - \rho e^{i\theta}) \in D(0, R) \cup \{ z_0 \}, \ 0 \leqslant \rho \leqslant \rho_0, |\theta| \leqslant \theta_0 \}$$

où $0 \le \theta_0 < \pi/2$ et $0 \le \rho < 2R \cos \theta_0$.

Exercice 2 Soit $(a_n)_{n\in\mathbb{N}}$ une suite de nombres complexes. On suppose que la série entière $\sum_{n\geqslant 0}a_n\,x^n$ est de rayon au moins 1 et que $f(x)=\sum_{n=0}^{\infty}a_n\,x^n\underset{x\to 1^-}{\longrightarrow}l\in\mathbb{C}$.

- 1. On suppose que $a_n \geqslant 0$ pour tout n. Montrer que $\sum a_n$ converge et que $\sum_{n=0}^{\infty} a_n = l$.
- 2. On suppose que $a_n = o\left(\frac{1}{n}\right)$. Montrer que $\sum a_n$ converge et que $\sum_{n=0}^{\infty} a_n = l$.

Exercice 3 Développer en série entière en 0 la fonction

$$x \in \mathbb{R} \longmapsto e^{-x^2/2} \int_0^x e^{t^2/2} dt.$$

Soit $(P_n)_{n\in\mathbb{N}}$ une suite de fonctions polynomiales à coefficients positifs qui converge simplement sur [0,1] vers une fonction f. Montrer qu'il existe $(b_n)_{n\in\mathbb{N}}$ une suite de réels positifs telle que

$$\forall x \in [0, 1[, f(x)] = \sum_{n=0}^{\infty} b_n x^n.$$

Exercice 5 Soit $\alpha \in \mathbb{N}^*$ et $x \in [0,1[$. Montrer que la série $\sum_{n \in \mathbb{N}^*} \frac{n^{\alpha} \, x^n}{1 - x^n}$ converge, et donner un équivalent de sa somme lorsque x tend vers 1.

Indication: On pourra admettre que les propriétés de l'intégrale s'étendent bien aux fonctions réglées sur un segment (c'est-à-dire admettant en tout point une limite à gauche et à droite), y compris l'approximation par les sommes de Riemann.

Soit $I \subseteq \mathbb{R}$ un intervalle ouvert et $f: I \to \mathbb{R}$ une fonction \mathcal{C}^{∞} . Montrer que les deux propriétés Exercice 6 suivantes sont équivalentes :

- (i) f est analytique, c'est-à-dire développable en série entière en tout point de I;
- (ii) Pour tout $x_0 \in I$, il existe $\eta > 0$ et des constantes C, r > 0 telles que

$$\forall n \in \mathbb{N}, \ \forall x \in I, \ |x - x_0| \leqslant \eta \Rightarrow \ |f^{(n)}(x)| \leqslant Cr^n n!.$$

Remarque : Avec la propriété de Borel-Lebesgue, on montre en fait que (ii) est aussi équivalent à : pour tout segment $J \subseteq I$, il existe des constantes C, r > 0 telles que $\forall n \in \mathbb{N}, \ \forall x \in J, \ |f^{(n)}(x)| \leq Cr^n n!$.